
INTERNATlONAL JOURNAL FOR NUMERlCAL M E T H O D S  IN FLUIDS, VOL. 7, 535-550 (1987) 

APPLICATION OF THE VOF METHOD TO THE 
SLOSHING OF A FLUID IN A PARTIALLY FILLED 

CYLINDRICAL CONTAINER 

1. S. PARTOM 

RAFAEL (A.D.A) ,  P.O. Box 2250. Haifa. Israel 

SUMMARY 

In a previous work we solved numerically the steady-state motion of an ideal fluid that fills a moving 
cylindrical container with partitions, and were able to compute the equivalent moments of inertia. 

Here we extend this work in two steps. First we introduce time dependence and then free surfaces, and are 
able to compute the transient motion ofthe fluid not filling the container. The main body ofthe work has to do 
with the treatment of free surfaces. Our approach is an extention to three dimensions of the volume of fluid 
method of Hirt and Nichols. The solution algorithm. is outlined, and two examples that demonstrate its 
capability are presented. 

K E Y  WORDS Slosh Cylindrical Container Free Surface ‘Volume of Fluid Numerical Method 

INTRODUCTION 

In Reference 1 we developed a three-dimensional numerical code to solve the steady irrotational 
flow of an ideal fluid inside a moving cylindrical container with partitions. In this work we extend 
our code in two steps. We first introduce time dependence, and can simulate the fluid motion 
for time-varying container movement. We then introduce ullage, which means that the fluid 
does not fill the container, so that free surfaces are present. This would make our code useful 
for analysing practical situations. The time-dependent equations and their solution algorithm 
are outlined briefly in Reference 2. In the next section we repeat and expand the presentation. 
The main challenge of this work is, however, the inclusion of a free surface separating two 
immiscible fluids. We therefore devote the main part of the presentation to the free surface 
algorithm and examples. 

The numerical simulation of fluid motion with a free surface is known to be difficult. The best 
way to simulate the motion of a boundary surface is by using the Lagrangian approach (the 
co-ordinate net moves with the fluid). But Lagrangian schemes are known to fail when the fluid 
body undergoes large distortions. For sloshing problems the Eulerian approach (the co-ordinate 
net is fixed with respect to the container) is therefore usually used. In trying to consider fluid 
motion with a free surface with Eulerian co-ordinates three main difficulties are encountered: 

I .  It is not obvious how the free surface (or for that matter, any other boundary surface) 
geometry should be described with respect to the fixed net. For two-dimensional problems 
several simple schemes suggest themselves. But the geometry becomes rather messy for three- 
dimensional problems. 

027 1-209 1/87/060535-16$08.00 
01987  by John Wiley & Sons, Ltd. 

Received 30 September I985 
Revised I August I986 



1. S .  PARTOM 536 

2. 

3. 

I t  is not obvious how difference equations should be written for cells that are partly filled with 
fluid. 
I t  is possible that for certain container motions, several free surfaces may exist in the fluid 
simultaneously. Also, new cavities may be formed and existing cavities may disappear. The 
solution algorithm should therefore be able not only to follow the initial free surface, but also 
to watch for the appearance of new surfaces and the disappearance of existing ones. 

These difficulties were challenged for many years by several groups of workers. One approach 
was to use Lagrangian markers in an Eulerian net. This is called the ‘marker and cell’ (MAC) 
m e t h ~ d . ~  Its main drawback is that it requires a very large computer. Another group of workers, 
headed by Hirt and Nichols from LANL, developed a different approach, named the volume 
of fluid (VOF) m e t h ~ d . ~ - ~  In this approach the kinematics of boundary surfaces are not defined 
and computed exactly. Instead, a quantity F that measures the relative volume of fluid, is defined 
for each net cell. For full cells F = 1, for empty cells F = 0, and for boundary cells 0 < F < 1. 
It is clear that the values of F in a boundary cell and in neighbouring cells determine roughly 
the position and orientation of the boundary there. It is obvious that if interest is focused on 
the close neighbourhood of the free surface, the VOF approach would yield a very rough and 
probably unacceptable approximation. However, in the case of the internal sloshing motion 
under consideration, practical applications focus interest mainly on the gross motion of the 
whole body of fluid, and on the resultant force and moment it exerts on the container. We 
therefore conclude that it is appropriate to apply the VOF approach to our problem. 

In their work Hirt and Nichols applied the VOF method to a two-dimensional geometry. We 
apply the method to a three-dimensional cylindrical geometry, which is far more complex. Much 
of the effort has therefore been devoted to algorithms that control the filling and emptying of 
cells without violating mass conservation and without diffusing the boundary. 

In the next section we summarize the governing equations. Then the computational algorithms 
are outlined with emphasis on those related to free boundaries. The results of several fundamental 
test problems were computed in order to help debug the numerical code as well as the 
computational algorithms. 

The results of several examples of computations are shown. From these it is possible to acquire 
a feeling for the capabilities and drawbacks of the VOF method. 

THEORY 

Denoting the absolute velocity field of the fluid by V and the pressure field by P ,  Euler’s 
equations for fluid motion are 

aV 1 
- + (V. grad)V = - - grad P + G , 
at P 

where G is the gravitational acceleration field, and 

div V = 0. 

Transforming to the container frame of reference we have the momentum equation 

(3) 
au 1 
- + (Us grad) U = - - grad P - A, - 2 ( 0  x U) + G 
at P 

and the continuity equation 

div U = 0, (4) 
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(5 )  u = v-vb, 
where o is the angular velocity vector of the container and vb is the velocity of a point moving 
with the container: 

V, = V, + x R ,  (6) 

where R is the radius vector and V, is the translation velocity of the container. 
A, is the acceleration of a point moving with the container given by 

A, = A, + y x R + o x (0 x R), (7) 
where A,, is the translation acceleration and y the angular acceleration of the container. 

Taking the divergence of equation (3) and using equation (4) we have 

div grad P = S,(U) , (8) 

S,(U)= -pdiv[(U-grad)U+Ab+2(co x U)]. (9) 
where 

We refer to equation (8) as the pressure equation. The pressure equation is used to compute the 
pressure field once the velocity field has been obtained. 

To start a flow problem we have to assume an initial flow field that is compatible with the 
boundary conditions. This flow field is generated in the following way. First, an initial arbitrary 
velocity field V, is assumed. The usual assumption is that the fluid is at rest with respect to the 
inertial reference frame, i.e. 

v, =o; u, = -vb.  (10) 
Generally U, does not satisfy the boundary conditions. Therefore a correction field U, is added, 

so that 

u=u, +u,. (1 1) 

(12) 
where generally S ,  # 0 .  We further assume that U, is derivable from a potential 4,. This is 
equivalent to a rapid application of the boundary motion so that vorticity would not have 
enough time to develop. We thus have 

(13) 

By the continuity equation (4) we then have 

div U, = - div U, = - S,, 

U, = grad 4,; div grad 4c = - S,. 

Equation ( 1  3) is referred to as the velocity equation. 
We also use the velocity equation during time integration as a means to control fluid mass (or 

volume) conservation. At the end of each time step we obtain a new flow field U’. Because of various 
sources of error U‘ would not generally conserve fluid mass exactly, so that generally 

S,=divU’#O (14) 

(15) 

To compensate for the unbalanced mass flow a correction field U, is added, so that 

U = U’ + U,, div U = 0, div U, = - div U = - S,, 

and we solve for U, by using the velocity equation (13). 
For time integration an explicit scheme is used. This certainly bears upon stability and precision 

but simplifies numerical problems considerably. A time step starts by using equation (3) to 
compute the acceleration field dU/at from the old velocity field and the old pressure field. From the 
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accelerations a new velocity field is obtained. This is corrected for exact mass conservation by 
applying the velocity equation (13). The corrected velocity field is then used in the pressure 
equation (8) to compute the new pressure field. 

The velocity and pressure equations are Poisson’s equations, and so need boundary conditions. 
For a full container the boundary conditions are straightforward: 

8 4  
a n  

(UC), = 2 = 0 

for the velocity equation, where n is the direction normal to the container wall, and 

(grad P ) ,  = - p[(U.grad)U + A,, + 2(o x R)], . (17) 

For an unfilled container, mass conservation adjustment is enforced only for completely full 
cells, and the boundary conditions are somewhat different. When there is a full cell near the 
container wall we allow for the possibility that the fluid moves inwards (and a new free surface 
is about to be formed). This is done by taking 4c = 0 at a virtual cell outside the container 
whenever u, at the boundary points inwards. Similarly, when a full cell is near a boundary cell 
(a partly filled or empty cell) u, # 0 and we take 4c = 0 at the boundary cell. 

For an unfilled container we solve the pressure equation for full as well as for partly filled 
cells. To do this we modify the pressure equation (9) by introducing the fluid volume function 
F.  We thus use 

(18) 
and we take P = 0 at the empty cells. Whenever a partly filled cell is near the container wall we 
take P = 0 at a virtual cell outside the container. 

The normal velocity components on cell boundaries between two partly filled cells are treated in 
the same way as those between full cells. Whenever there is a partly filled cell near an empty cell the 
normal velocity component on their common boundary is set to zero. This enables us to compute 
the gradients of velocity components needed in the pressure and momentum equations. 

Finally, we need to decompose the gravity vector G into its components in the reference frame of 
the moving container. We do this by using the transformation equation 

div grad P = FS,  

+ o x G .  
moving system 

But 

= O .  
(:)inertial system 

Therefore 

= - o x C = G x o  
(:)moving system 

We time integrate equation (21) and obtain the time variations of the components G,, G, and GZ in 
the container reference system. 

VOLUME OF FLUID UPDATING 

As mentioned in the introduction, the VOF method developed by Hirt and Nichols has been 
presented by them for two-dimensional geometries4 In this work it is adapted to three- 
dimensional geometries. 
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Following Hirt and Nichols we define for each cell a volume of fluid function F :  

m F = “  
P v c  

where mc is the mass of fluid in the cell and Vc is the volume of the cell. Clearly, for an empty 
cell F = 0, for a full cell F = 1 and for a partly filled cell 0 < F < 1 .  A partly filled cell is called 
a boundary cell. 

For two-dimensional geometries Hirt and Nichols approximate the fluid free surface by a 
straight line crossing the boundary cell. They show how to determine the position and orientation 
of the boundary line in a cell from the values of F in that cell and in neighbouring cells. 

This is done by first approximating grad F from the values of F in neighbouring cells. The 
orientation of the normal to the boundary line coincides with the direction of grad F .  The position 
of the boundary line is then determined from the geometry of a line of known orientation cutting a 
given cell. 

This procedure can be extended to three-dimensional geometry, where a boundary plane 
replaces the boundary line. The complexity and amount of computations would, however, be much 
larger. 

Hirt and Nichols compute the position and orientation of the boundary line in a boundary cell 
for only one purpose: to determine by interpolation the pressure at  the centre of a boundary cell 
from the pressure boundary condition and the pressure in a nearby full cell. We chose not to adopt 
this approach for our three-dimensional geometries, because interpolation in a three-dimensional 
net is not straightforward, and because it calls for a large volume of computations. Instead we chose 
to compute the pressure by modifying the pressure equation according to equation 18. In this way 
we automatically take care of the three-dimensional interpolation, and also avoid the necessity of 
determining the position and orientation of the boundary plane in each boundary cell. We did not, 
however, compare the two approaches in terms of accuracy. This comparison has yet to be 
performed. 

The most intricate part of the VOF method is the algorithm for updating F at or near boundary 
cells. Generally the updating is effected by the conservation of fluid volume (or mass) equation: 

AF 1 
F d U n A d ,  

- 
At vc on cell boundaries 

where Fd is the volume of fluid transmitted through the cell boundary relative to the considered cell 
volume, un is the average fluid velocity normal to the cell boundary, A d  is the cell boundary 
area and V, is the cell volume. But it is not obvious what to take for F,. 

Hirt and Nichols showed how to determine F d  for two-dimensional geometry in a way that 
would solve two problems: (a) ensure fluid volume conversation and (b) avoid dispersion of the 
boundary. In our preliminary computations we realized that boundary dispersion is indeed a 
severe problem. If not strictly checked by proper choice of Fd the boundary tends to disperse, and 
all the empty cells very quickly become partly filled. 

We extended Hirt and Nichols’ approach for determining F ,  to three-dimensional geometry as 
follows. Consider two adjacent cells as in Figure 1. Fd for the common boundary of these two cells 
depends first on the value of F ,  (the donor cell): for F ,  = 0 we have F d  = 0; for F ,  = 1 we have 
F ,  = 1. The case of 0 < F ,  < 1 is subdivided into three branches according to the value of F,. 

For F ,  = 0, Fd is determined according to the general direction of the fluid boundary in cell 1. 
The general direction could be either ‘parallel’ or ‘perpendicular’ to the cell boundary, as shown in 
Figure 2. 
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Figure 1. Schematics of two adjacent cells 

considered cell boundary 

I, #I 

perpendicular  

f r e e  s u r f a c e  free surfocc 

Figure 2. ‘Parallel’ and ‘perpendicular’ general directions of the fluid boundary 

” pa r o 1 1  e I ” 

The general direction of the fluid boundary in cell 1 is determined from the values of F in its four 
neighbouring cells, as shown in Figure 3. 

When one or more of the neighbouring cells is empty the fluid boundary in cell 1 is 
‘perpendicular’ to the considered cell boundary. When none of the neighbouring cells is empty, the 
fluid boundary in cell 1 is ‘parallel’ to the considered cell boundary. 

For the ‘perpendicular’ general direction we thus have F ,  = F , ,  and for the ‘parallel’ F ,  = 0. For 
F ,  = 1 we always have F ,  = F , .  

For the case 0 < F 2  < 1 we also determine first the general direction of the fluid boundary in cell 
1. Then, for the ‘perpendicular’ general direction we have F ,  = F ,  and for the ‘parallel’ direction 

All this does not prevent boundary dispersion in all situations. To  avoid numerical dispersion it 
is necessary to prevent fluid in a partly filled cell from spilling into an empty cell. We do  this by 
simply setting to zero the velocity u, normal to the boundary between two such cells. In doing this 
we must take care, however, to exclude two rarely occurring cases: (a) when the fluid is just crossing 
a cell edge and (b) when the fluid boundary is just crossing a cell corner. These two situations are 
represented in Figure 4. We see that for these two rarely occurring cases it is essential not to prevent 
the fluid from spilling into the empty cell. 

The complete algorithm for checking whether an empty cell can be filled or a full cell can be 
emptied, from the point of view of avoiding boundary dispersion, calls for considerable 
programming sophistication. We chose not to outline the details of this algorithm here. 

F,=1.  

onsidered cell 
boundary 

Figure 3. Representation of the four neighbouring cells to a given cell boundary 
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ree surface a t  
t +  At 

Free surface a t  t . 
Figure 4. Schematics of a case where the fluid boundary is just crossing a cell edge or corner 

Finally, there is the problem of overfilling and overemptying. It may happen that during a time 
step At a cell that is almost full would be overfilled. What is done in such a case (and also in the 
parallel case of overemptying) is to spill the overfill into neighbouring empty or partly filled cells. 

NUMERICAL SCHEME 

The finite difference net is the same one described in Reference 1 (Figure 1 there). Briefly, the cells 
are formed by the intersection of radial planes, horizontal planes and cylindrical surfaces. Along 
the container axis there are cylindrical cells. The scalar functions P and 4c are defined at the cell 
centres. The velocity components are defined on cell boundaries, so that we have a staggered three- 
dimensional network. 

To write the finite difference approximation for the momentun equation (3) we first define 

F = A, + 2(0 x U), (24) 

T = (U.grad)U. (25) 
The component of F and T in cylindrical co-ordinates are given in Reference 1 as well as their 

difference approximations. The difference approximation for the term grad P is the usual central 
difference expression. 

For the cylindrical cells at the centre Cartesian co-ordinates are used. A certain amount of care is 
needed to match the Cartesian components in the inner cell to the cylindrical components in the 
outer cells. 

As mentioned above, a time cycle starts by using the momentun equation to compute the 
fluid acceleration and from it the velocity field. The velocity field is then corrected to enforce 
exact mass conservation by solving the velocity equation in full cells. The finite difference form 
of the velocity equation is given in Reference 1, where its solution procedure is also outlined. It 
is an iterative line relaxation with a single fixed point. What is different when there are unfilled 
cells is that the lines (in the z-direction) are partly incomplete. This difficulty is easily overcome 
by inserting virtual equations ($c = 0) for the partly filled and empty cells. 

After the corrected velocity field is obtained, the VOF function F is updated by the procedures 
described previously. If there is an overspilling or underemptying in the course of updating we once 
again go through the velocity field correction procedure to ensure exact mass conservation. 

The next step is to compute the pressure field by solving the pressure equation. The difference 
approximation of the right-hand side of the pressure equation is given in detail in Reference 1, as 
well as the finite difference representation of the equation itself. The solution procedure is also 
outlined there. Similar to that of the velocity equation, it is solved by line relaxation in the axial 
direction. To avoid divergence in the singular case of a full container, a constant value is subtracted 
from all the cells after each iteration. We do this by looking for the lowest pressure value in the field, 
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and this value is subtracted from all the cells. Recall that ithe pressure equation is solved only 
for full and partly filled cells. The pressure at the container wall is extrapolated from the pressure 
values in the cell. We then integrate over the container wall and obtain the resultant force and 
moment exerted by the fluid on the container. The detailed equations for the procedure are also 
outlined in Reference 1. A t  this stage the computation is ready for a new time cycle. 

The scheme just outlined was programmed for a CDC Cyber-175 computer. Because of 
limitations in fast memory capacity, the maximum net used was 6 x 14 x 60 cells in the r, 6 and z 
directions, respectively. Many computations were run with a sparse net of 3 x 6 x 16 cells, and we 
were able to show that even for such a sparse net the results are acceptable from the point of view of 
stability and accuracy. 

In a typical run with the sparse net a time cycle requires about 6 s of CPU time. In the examples 
that follow around 100 time cycles were needed to complete a problem, which amounts to about 
600s CPU time per problem. 

In the next section several examples are described and discussed. 

COMPUTED EXAMPLES 

To check the performance of the computer code, several simple problems, which we call ‘zero 
computations’, were run. In these computations the boundary conditions are such that almost 
nothing happens to the fluid, and it is easy to check whether indeed nothing happens. Some of the 
‘zero computations’ were 

(a) a full container and steady boundary condition, and comparison with the results obtained in 

(b) a partly filled container, where the free surface is in the z-direction, no gravitation and the 

(c) a half filled container where the free surface is in the z-plane, no gravitation, and the 

(d) a partly filled unmoving container in the z-direction and the fluid free-falls by the influence of 

In all these zero computations misbehaviours of the flow, especially near boundaries, were 

We then proceeded to compute meaningful examples. In what follows we present results for two 

Reference 1 

container translates with a constant velocity in the z-direction 

container rotates with a constant angular velocity around the z-axis 

gravity. 

located, and the numerical algorithm corrected accordingly. 

of them. 

Example I :  ,fluid motion in a horizontal unmoving container by the influence of gravity 

The initial conditions for this problem are shown in Figure 5. There are two cases. In case a the 
container is half filled, and in case b three-quarters filled. 

The container is horizontal and gravitation is in the x-direction. At t = 0 the diaphragm holding 
the fluid is removed and the fluid flows into the empty part of the container. The problem has 
symmetry with respect to the xz-plane, which enables us to check to what extent the code preserves 
this symmetry. In the preliminary runs this symmetry was not preserved. However, after the causes 
of asymmetry were corrected we obtained identical results on the two sides to within five significant 
digits. 

The results obtained for case a are shown in Figure 6,  in which two sections of the container are 
shown at five different times. In the boundary cells we inserted the values of the VOF function F. 
With the aid of the F values we were able to draw the approximate location of the free surface. 
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l- 4 c- L L 4 
case o c a s e  b 

Figure 5. Initial conditions for example I :  (a) half-filled container; (b) three-quarters filled container 

It is possible to see that the fluid surface is not ‘smooth’. There are some bubbles under the 
surface and some splashes above it. We do not claim that these bubbles and splashes are real. They 
may well be numerical artefacts that result from deficiencies in our VOF algorithm. We intend to 
look into this more closely in the future. However, it should be borne in mind that usually the main 
interest is in computing the resultant force and moment exerted by the fluid in the container. It 
would seem that these integral quantities are not influenced by numerical debris at the free surface. 

In Figure 8 we show the fluid free surface in the zx-plane at five different times. It is possible to 
deduce from this Figure the speed of spilling of the fluid by the influence of gravity. 

The results obtained for case b are shown in Figure 7. In this case it is possible to observe 
the interaction of the moving fluid with the container end boundary without spending too much 
computer time. In Figure 10 the free surface contours at different times in a longitudinal section 
are shown. 

As mentioned before, we are interested mainly in the resultant force Q and moment M on the 
container. The components different from zero in the example under consideration are Q,, Q, 
and M y .  Their values for cases a and b are plotted in Figures 9 and 11, respectively. 

From simple considerations it can be deduced that when steady state is attained (by the aid of 
viscosity neglected in our computations) Q, and M y  tend to zero by symmetry, and Q, to the total 
fluid weight. This tendency is indeed observed in the results, especially for case b. 

Example 2: the container moves around a horizontal axis 

In case a the container has its upper layer of cells empty and its motion is given by w, = 1 rad/s 
fort > 0. Gravity is ignored. The force and moment components different from zero are, in this case, 
Q,, Q, and M y .  Longitudinal and transverse cross-sections at different times with values of F and 
the free surface line are shown in Figure 12. Curves of Q,,QZ and M y  are given in Figure 13. 

In case b the motion is 05, = 1 rad/s2 for t > 0, and gravity is ignored. The results of the 
initial time cycle enable us (as in Reference 1) to compute the equivalent moment of inertia by 

I, ,  = M J h , .  (26) 

These results are plotted as a function of the degree of filling V,(volume of fluid/volume of 
container), in terms of the relative moment of inertia I, , ,  in Figure 14. I, ,  is defined by 

I , ,  = ~,,/~,,~ (27) 

where I, ,  is the moment of inertia of a rigid fluid. The L I D  ratio in this case is 16/7. We see that the 
case of the full container is singular. For a partly filled container there is a shallow maximum 
around V, = 0.6, and I , ,  there is around 0.62. 
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Figure 6. Example 1 ,  case a. Fluid surface and F values in longitudinal and transverse sections, at different times 
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Figure 7. Example 1, case b. Fluid surface and F values in longitudinal and transverse sections, at different times 
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Figure 8. Example 1, case a. Fluid surface in a longitudinal section at different times 
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Figure 9. Example 1 ,  case a. Resultant forces and torque exerted by the fluid on the container 
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Figure 10. Example 1, case b. Fluid surface in a longitudinal section at different times 
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Figure 11. Example I, case b. Resultant forces and torque exerted by the fluid on the container 
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Figure 13. Example 2. Resultant forces and torque exerted by the fluid on the container 
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Figure 14. Example 2. Relative equivalent moment of inertia as a function of the degree of filling 
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